理解C#.NET泛型运作原理-C/S开发框架
前言
我们都知道泛型在C#的重要性,泛型是OOP语言中三大特征的多态的最重要的体现,几乎泛型撑起了整个.NET框架,在讲泛型之前,我们可以抛出一个问题,我们现在需要一个可扩容的数组类,且满足所有类型,不管是值类型还是引用类型,那么在没有用泛型方法实现,如何实现?
一.泛型之前的故事
我们肯定会想到用object
来作为类型参数,因为在C#中,所有类型都是基于Object
类型的。因此Object是所有类型的最基类,那么我们的可扩容数组类如下:
public class ArrayExpandable
{
private object?[] _items = null;
private int _defaultCapacity = 4;
private int _size;
public object? this[int index]
{
get
{
if (index < 0 || index >= _size)
throw new ArgumentOutOfRangeException(nameof(index));
return _items[index];
}
set
{
if (index < 0 || index >= _size)
throw new ArgumentOutOfRangeException(nameof(index));
_items[index] = value;
}
}
public int Capacity
{
get => _items.Length;
set
{
if (value < _size)
{
throw new ArgumentOutOfRangeException(nameof(value));
}
if (value != _items.Length)
{
if (value > 0)
{
object[] newItems = new object[value];
if (_size > 0)
{
Array.Copy(_items, newItems, _size);
}
_items = newItems;
}
else
{
_items = new object[_defaultCapacity];
}
}
}
}
public int Count => _size;
public ArrayExpandable()
{
_items = new object?[0];
}
public ArrayExpandable(int capacity)
{
_items = new object?[capacity];
}
public void Add(object? value)
{
//数组元素为0或者数组元素容量满
if (_size == _items.Length) EnsuresCapacity(_size + 1);
_items[_size] = value;
_size++;
}
private void EnsuresCapacity(int size)
{
if (_items.Length < size)
{
int newCapacity = _items.Length == 0 ? _defaultCapacity : _items.Length * 2;
if (newCapacity < size) newCapacity = size;
Capacity = newCapacity;
}
}
然后我们来验证下:
var arrayStr = new ArrayExpandable();
var strs = new string[] { "ryzen", "reed", "wymen" };
for (int i = 0; i < strs.Length; i++)
{
arrayStr.Add(strs[i]);
string value = (string)arrayStr[i];//改为int value = (int)arrayStr[i] 运行时报错
Console.WriteLine(value);
}
Console.WriteLine($"Now {nameof(arrayStr)} Capacity:{arrayStr.Capacity}");
var array = new ArrayExpandable();
for (int i = 0; i < 5; i++)
{
array.Add(i);
int value = (int)array[i];
Console.WriteLine(value);
}
Console.WriteLine($"Now {nameof(array)} Capacity:{array.Capacity}");
输出:
ryzen
reed
wymen
gavin
Now arrayStr Capacity:4
0
1
2
3
4
Now array Capacity:8
貌似输出结果是正确的,能够动态进行扩容,同样的支持值类型Struct
的int32
和引用类型的字符串,但是其实这里会发现一些问题,那就是
- 引用类型
string
进行了类型转换的验证
- 值类型
int32
进行了装箱和拆箱操作,同时进行类型转换类型的检验
- 发生的这一切都是在运行时的,假如类型转换错误,得在运行时才能报错
大致执行模型如下:
引用类型:
值类型:
那么有没有一种方法能够避免上面遇到的三种问题呢?在借鉴了cpp的模板和java的泛型经验,在C#2.0的时候推出了更适合.NET体系下的泛型
二.用泛型实现
public class ArrayExpandable<T>
{
private T[] _items;
private int _defaultCapacity = 4;
private int _size;
public T this[int index]
{
get
{
if (index < 0 || index >= _size)
throw new ArgumentOutOfRangeException(nameof(index));
return _items[index];
}
set
{
if (index < 0 || index >= _size)
throw new ArgumentOutOfRangeException(nameof(index));
_items[index] = value;
}
}
public int Capacity
{
get => _items.Length;
set
{
if (value < _size)
{
throw new ArgumentOutOfRangeException(nameof(value));
}
if (value != _items.Length)
{
if (value > 0)
{
T[] newItems = new T[value];
if (_size > 0)
{
Array.Copy(_items, newItems, _size);
}
_items = newItems;
}
else
{
_items = new T[_defaultCapacity];
}
}
}
}
public int Count => _size;
public ArrayExpandable()
{
_items = new T[0];
}
public ArrayExpandable(int capacity)
{
_items = new T[capacity];
}
public void Add(T value)
{
//数组元素为0或者数组元素容量满
if (_size == _items.Length) EnsuresCapacity(_size + 1);
_items[_size] = value;
_size++;
}
private void EnsuresCapacity(int size)
{
if (_items.Length < size)
{
int newCapacity = _items.Length == 0 ? _defaultCapacity : _items.Length * 2;
if (newCapacity < size) newCapacity = size;
Capacity = newCapacity;
}
}
}
那么测试代码则改写为如下:
var arrayStr = new ArrayExpandable<string>();
var strs = new string[] { "ryzen", "reed", "wymen", "gavin" };
for (int i = 0; i < strs.Length; i++)
{
arrayStr.Add(strs[i]);
string value = arrayStr[i];//改为int value = arrayStr[i] 编译报错
Console.WriteLine(value);
}
Console.WriteLine($"Now {nameof(arrayStr)} Capacity:{arrayStr.Capacity}");
var array = new ArrayExpandable<int>();
for (int i = 0; i < 5; i++)
{
array.Add(i);
int value = array[i];
Console.WriteLine(value);
}
Console.WriteLine($"Now {nameof(array)} Capacity:{array.Capacity}");
输出:
ryzen
reed
wymen
gavin
Now arrayStr Capacity:4
0
1
2
3
4
Now array Capacity:8
我们通过截取部分ArrayExpandable<T>
的IL查看其本质是个啥:
//声明类
.class public auto ansi beforefieldinit MetaTest.ArrayExpandable`1<T>
extends [System.Runtime]System.Object
{
.custom instance void [System.Runtime]System.Reflection.DefaultMemberAttribute::.ctor(string) = ( 01 00 04 49 74 65 6D 00 00 )
}
//Add方法
.method public hidebysig instance void Add(!T 'value') cil managed
{
// 代码大小 69 (0x45)
.maxstack 3
.locals init (bool V_0)
IL_0000: nop
IL_0001: ldarg.0
IL_0002: ldfld int32 class MetaTest.ArrayExpandable`1<!T>::_size
IL_0007: ldarg.0
IL_0008: ldfld !0[] class MetaTest.ArrayExpandable`1<!T>::_items
IL_000d: ldlen
IL_000e: conv.i4
IL_000f: ceq
IL_0011: stloc.0
IL_0012: ldloc.0
IL_0013: brfalse.s IL_0024
IL_0015: ldarg.0
IL_0016: ldarg.0
IL_0017: ldfld int32 class MetaTest.ArrayExpandable`1<!T>::_size
IL_001c: ldc.i4.1
IL_001d: add
IL_001e: call instance void class MetaTest.ArrayExpandable`1<!T>::EnsuresCapacity(int32)
IL_0023: nop
IL_0024: ldarg.0
IL_0025: ldfld !0[] class MetaTest.ArrayExpandable`1<!T>::_items
IL_002a: ldarg.0
IL_002b: ldfld int32 class MetaTest.ArrayExpandable`1<!T>::_size
IL_0030: ldarg.1
IL_0031: stelem !T
IL_0036: ldarg.0
IL_0037: ldarg.0
IL_0038: ldfld int32 class MetaTest.ArrayExpandable`1<!T>::_size
IL_003d: ldc.i4.1
IL_003e: add
IL_003f: stfld int32 class MetaTest.ArrayExpandable`1<!T>::_size
IL_0044: ret
} // end of method ArrayExpandable`1::Add
原来定义的时候就是用了个T
作为占位符,起一个模板的作用,我们对其实例化类型参数的时候,补足那个占位符,我们可以在编译期就知道了其类型,且不用在运行时进行类型检测,而我们也可以对比ArrayExpandable
和ArrayExpandable<T>
在类型为值类型中的IL,查看是否进行拆箱和装箱操作,以下为IL截取部分:
ArrayExpandable:
IL_0084: newobj instance void GenericSample.ArrayExpandable::.ctor()
IL_0089: stloc.2
IL_008a: ldc.i4.0
IL_008b: stloc.s V_6
IL_008d: br.s IL_00bc
IL_008f: nop
IL_0090: ldloc.2
IL_0091: ldloc.s V_6
IL_0093: box [System.Runtime]System.Int32 //box为装箱操作
IL_0098: callvirt instance void GenericSample.ArrayExpandable::Add(object)
IL_009d: nop
IL_009e: ldloc.2
IL_009f: ldloc.s V_6
IL_00a1: callvirt instance object GenericSample.ArrayExpandable::get_Item(int32)
IL_00a6: unbox.any [System.Runtime]System.Int32 //unbox为拆箱操作
ArrayExpandable<T>:
IL_007f: newobj instance void class GenericSample.ArrayExpandable`1<int32>::.ctor()
IL_0084: stloc.2
IL_0085: ldc.i4.0
IL_0086: stloc.s V_6
IL_0088: br.s IL_00ad
IL_008a: nop
IL_008b: ldloc.2
IL_008c: ldloc.s V_6
IL_008e: callvirt instance void class GenericSample.ArrayExpandable`1<int32>::Add(!0)
IL_0093: nop
IL_0094: ldloc.2
IL_0095: ldloc.s V_6
IL_0097: callvirt instance !0 class GenericSample.ArrayExpandable`1<int32>::get_Item(int32)
我们从IL也能看的出来,ArrayExpandable<T>
的T
作为一个类型参数,在编译后在IL已经确定了其类型,因此当然也就不存在装拆箱的情况,在编译期的时候IDE能够检测类型,因此也就不用在运行时进行类型检测,但并不代表不能通过运行时检测类型(可通过is和as),还能通过反射体现出泛型的灵活性,后面会讲到
其实有了解ArrayList
和List
的朋友就知道,ArrayExpandable
和ArrayExpandable<T>
其实现大致就是和它们一样,只是简化了很多的版本,我们这里可以通过 BenchmarkDotNet 来测试其性能对比,代码如下:
[SimpleJob(RuntimeMoniker.NetCoreApp31,baseline:true)]
[SimpleJob(RuntimeMoniker.NetCoreApp50)]
[MemoryDiagnoser]
public class TestClass
{
[Benchmark]
public void EnumAE_ValueType()
{
ArrayExpandable array = new ArrayExpandable();
for (int i = 0; i < 10000; i++)
{
array.Add(i);//装箱
int value = (int)array[i];//拆箱
}
array = null;//确保进行垃圾回收
}
[Benchmark]
public void EnumAE_RefType()
{
ArrayExpandable array = new ArrayExpandable();
for (int i = 0; i < 10000; i++)
{
array.Add("r");
string value = (string)array[i];
}
array = null;//确保进行垃圾回收
}
[Benchmark]
public void EnumAE_Gen_ValueType()
{
ArrayExpandable<int> array = new ArrayExpandable<int>();
for (int i = 0; i < 10000; i++)
{
array.Add(i);
int value = array[i];
}
array = null;//确保进行垃圾回收;
}
[Benchmark]
public void EnumAE_Gen_RefType()
{
ArrayExpandable<string> array = new ArrayExpandable<string>();
for (int i = 0; i < 10000; i++)
{
array.Add("r");
string value = array[i];
}
array = null;//确保进行垃圾回收;
}
[Benchmark]
public void EnumList_ValueType()
{
List<int> array = new List<int>();
for (int i = 0; i < 10000; i++)
{
array.Add(i);
int value = array[i];
}
array = null;//确保进行垃圾回收;
}
[Benchmark]
public void EnumList_RefType()
{
List<string> array = new List<string>();
for (int i = 0; i < 10000; i++)
{
array.Add("r");
string value = array[i];
}
array = null;//确保进行垃圾回收;
}
[Benchmark(Baseline =true)]
public void EnumAraayList_valueType()
{
ArrayList array = new ArrayList();
for (int i = 0; i < 10000; i++)
{
array.Add(i);
int value = (int)array[i];
}
array = null;//确保进行垃圾回收;
}
[Benchmark]
public void EnumAraayList_RefType()
{
ArrayList array = new ArrayList();
for (int i = 0; i < 10000; i++)
{
array.Add("r");
string value = (string)array[i];
}
array = null;//确保进行垃圾回收;
}
}
我还加入了.NETCore3.1和.NET5的对比,且以.NETCore3.1的EnumAraayList_valueType
方法为基准,性能测试结果如下:
用更直观的柱形图来呈现:
我们能看到在这里List
的性能在引用类型和值类型中都是所以当中是最好的,不管是执行时间、GC次数,分配的内存空间大小,都是最优的,同时.NET5在几乎所有的方法中性能都是优于.NETCore3.1,这里还提一句,我实现的ArrayExpandable
和ArrayExpandable<T>
性能都差于ArrayList
和List
,我还没实现IList
和各种方法,只能说句dotnet基金会牛逼
三.泛型的多态性
多态的声明
类、结构、接口、方法、和委托可以声明一个或者多个类型参数,我们直接看代码:
interface IFoo<InterfaceT>
{
void InterfaceMenthod(InterfaceT interfaceT);
}
class Foo<ClassT, ClassT1>: IFoo<StringBuilder>
{
public ClassT1 Field;
public delegate void MyDelegate<DelegateT>(DelegateT delegateT);
public void DelegateMenthod<DelegateT>(DelegateT delegateT, MyDelegate<DelegateT> myDelegate)
{
myDelegate(delegateT);
}
public static string operator +(Foo<ClassT, ClassT1> foo,string s)
{
return $"{s}:{foo.GetType().Name}";
}
public List<ClassT> Property{ get; set; }
public ClassT1 Property1 { get; set; }
public ClassT this[int index] => Property[index];//没判断越界
public Foo(List<ClassT> classT, ClassT1 classT1)
{
Property = classT;
Property1 = classT1;
Field = classT1;
Console.WriteLine($"构造函数:parameter1 type:{Property.GetType().Name},parameter2 type:{Property1.GetType().Name}");
}
//方法声明了多个新的类型参数
public void Method<MenthodT, MenthodT1>(MenthodT menthodT, MenthodT1 menthodT1)
{
Console.WriteLine($"Method<MenthodT, MenthodT1>:{(menthodT.GetType().Name)}:{menthodT.ToString()}," +
$"{menthodT1.GetType().Name}:{menthodT1.ToString()}");
}
public void Method(ClassT classT)
{
Console.WriteLine($"{nameof(Method)}:{classT.GetType().Name}:classT?.ToString()");
}
public void InterfaceMenthod(StringBuilder interfaceT)
{
Console.WriteLine(interfaceT.ToString());
}
}
控制台测试代码:
static void Main(string[] args)
{
Test();
Console.ReadLine();
}
static void Test()
{
var list = new List<int>() { 1, 2, 3, 4 };
var foo = new Foo<int, string>(list, "ryzen");
var index = 0;
Console.WriteLine($"索引:索引{index}的值:{foo[index]}");
Console.WriteLine($"Filed:{foo.Field}");
foo.Method(2333);
foo.Method<DateTime, long>(DateTime.Now, 2021);
foo.DelegateMenthod<string>("this is a delegate", DelegateMenthod);
foo.InterfaceMenthod(new StringBuilder().Append("InterfaceMenthod:this is a interfaceMthod"));
Console.WriteLine(foo+"重载+运算符");
}
static void DelegateMenthod(string str)
{
Console.WriteLine($"{nameof(DelegateMenthod)}:{str}");
}
输出如下:
构造函数:parameter1 type:List`1,parameter2 type:String
索引:索引0的值:1
Filed:ryzen
Method:Int32:classT?.ToString()
Method<MenthodT, MenthodT1>:DateTime:2021/03/02 11:45:40,Int64:2021
DelegateMenthod:this is a delegate
InterfaceMenthod:this is a interfaceMthod
重载+运算符:Foo`2
我们通过例子可以看到的是:
- 类(结构也可以),接口,委托,方法都可以声明一个或多个类型参数,体现了声明的多态性
- 类的函数成员:属性,字段,索引,构造器,运算符只能引入类声明的类型参数,不能够声明,唯有方法这一函数成员具备声明和引用类型参数两种功能,由于具备声明功能,因此可以声明和委托一样的类型参数并且引用它,这也体现了方法的多态性
多态的继承
父类和实现类或接口的接口都可以是实例化类型,直接看代码:
interface IFooBase<IBaseT>{}
interface IFoo<InterfaceT>: IFooBase<string>
{
void InterfaceMenthod(InterfaceT interfaceT);
}
class FooBase<ClassT>
{
}
class Foo<ClassT, ClassT1>: FooBase<ClassT>,IFoo<StringBuilder>{}
我们可以通过例子看出:
- 由于
Foo
的基类FooBase
定义的和Foo
有着共享的类型参数ClassT
,因此可以在继承的时候不实例化类型
- 而
Foo
和IFoo
接口没定义相同的类型参数,因此可以在继承的时候实例化出接口的类型参数StringBuild
出来
IFoo
和IFooBase
没定义相同的类型参数,因此可以在继承的时候实例化出接口的类型参数string
出来
- 上述都体现出继承的多态性
多态的递归
我们定义如下一个类和一个方法,且不会报错:
class D<T> { }
class C<T> : D<C<C<T>>>
{
void Foo()
{
var foo = new C<C<T>>();
Console.WriteLine(foo.ToString());
}
}
因为T
能在实例化的时候确定其类型,因此也支持这种循环套用自己的类和方法的定义
四.泛型的约束
where的约束
我们先上代码:
class FooBase{ }
class Foo : FooBase
{
}
class someClass<T,K> where T:struct where K :FooBase,new()
{
}
static void TestConstraint()
{
var someClass = new someClass<int, Foo>();//通过编译
//var someClass = new someClass<string, Foo>();//编译失败,string不是struct类型
//var someClass = new someClass<string, long>();//编译失败,long不是FooBase类型
}
再改动下Foo类:
class Foo : FooBase
{
public Foo(string str)
{
}
}
static void TestConstraint()
{
var someClass = new someClass<int, Foo>();//编译失败,因为new()约束必须类含有一个无参构造器,可以再给Foo类加上个无参构造器就能编译通过
}
我们可以看到,通过where
语句,可以对类型参数进行约束,而且一个类型参数支持多个约束条件(例如K),使其在实例化类型参数的时候,必须按照约束的条件对应实例符合条件的类型,而where
条件约束的作用就是起在编译期约束类型参数的作用
out和in的约束
说到out
和in
之前,我们可以说下协变和逆变,在C#中,只有泛型接口和泛型委托可以支持协变和逆变
协变
我们先看下代码:
class FooBase{ }
class Foo : FooBase
{
}
interface IBar<T>
{
T GetValue(T t);
}
class Bar<T> : IBar<T>
{
public T GetValue(T t)
{
return t;
}
}
static void Test()
{
var foo = new Foo();
FooBase fooBase = foo;//编译成功
IBar<Foo> bar = new Bar<Foo>();
IBar<FooBase> bar1 = bar;//编译失败
}
这时候你可能会有点奇怪,为啥那段代码会编译失败,明明Foo
类可以隐式转为FooBase
,但作为泛型接口类型参数实例化却并不能呢?使用out
约束泛型接口IBar
的T,那段代码就会编译正常,但是会引出另外一段编译报错:
interface IBar<out T>
{
T GetValue(string str);//编译成功
//T GetValue(T t);//编译失败 T不能作为形参输入,用out约束T支持协变,T可以作为返回值输出
}
IBar<Foo> bar = new Bar<Foo>();
IBar<FooBase> bar1 = bar;//编译正常
因此我们可以得出以下结论:
- 由于
Foo
继承FooBase
,本身子类Foo
包含着父类允许访问的成员,因此能隐式转换父类,这是类型安全的转换,因此叫协变
- 在为泛型接口用
out
标识其类型参数支持协变后,约束其方法的返回值和属性的Get(本质也是个返回值的方法)才能引用所声明的类型参数,也就是作为输出值,用out
很明显的突出了这一意思
而支持迭代的泛型接口IEnumerable
也是这么定义的:
public interface IEnumerable<out T> : IEnumerable
{
new IEnumerator<T> GetEnumerator();
}
逆变
我们将上面代码改下:
class FooBase{ }
class Foo : FooBase
{
}
interface IBar<T>
{
T GetValue(T t);
}
class Bar<T> : IBar<T>
{
public T GetValue(T t)
{
return t;
}
}
static void Test1()
{
var fooBase = new FooBase();
Foo foo = (Foo)fooBase;//编译通过,运行时报错
IBar<FooBase> bar = new Bar<FooBase>();
IBar<Foo> bar1 = (IBar<Foo>)bar;//编译通过,运行时报错
}
我们再改动下IBar,发现出现另外一处编译失败
interface IBar<in T>
{
void GetValue(T t);//编译成功
//T GetValue(T t);//编译失败 T不能作为返回值输出,用in约束T支持逆变,T可以作为返回值输出
}
IBar<FooBase> bar = new Bar<FooBase>();
IBar<Foo> bar1 = (IBar<Foo>)bar;//编译通过,运行时不报错
IBar<Foo> bar1 = bar;//编译通过,运行时不报错
因此我们可以得出以下结论:
- 由于
FooBase
是Foo
的父类,并不包含子类的自由的成员,转为为子类Foo
是类型不安全的,因此在运行时强式转换的报错了,但编译期是不能够确认的
- 在为泛型接口用
in
标识其类型参数支持逆变后,in
约束其接口成员不能将其作为返回值(输出值),我们会发现协变和逆变正是一对反义词
- 这里提一句,值类型是不支持协变和逆变的
同样的泛型委托Action
就是个逆变的例子:
public delegate void Action<in T>(T obj);
五.泛型的反射
我们先来看看以下代码:
static void Main(string[] args)
{
var lsInt = new ArrayExpandable<int>();
lsInt.Add(1);
var lsStr = new ArrayExpandable<string>();
lsStr.Add("ryzen");
var lsStr1 = new ArrayExpandable<string>();
lsStr.Add("ryzen");
}
然后通过ildasm查看其IL,开启视图-》显示标记值,查看Main方法:
void Main(string[] args) cil managed
{
.entrypoint
// 代码大小 52 (0x34)
.maxstack 2
.locals /*11000001*/ init (class MetaTest.ArrayExpandable`1/*02000003*/<int32> V_0,
class MetaTest.ArrayExpandable`1/*02000003*/<string> V_1,
class MetaTest.ArrayExpandable`1/*02000003*/<string> V_2)
IL_0000: nop
IL_0001: newobj instance void class MetaTest.ArrayExpandable`1/*02000003*/<int32>/*1B000001*/::.ctor() /* 0A00000C */
IL_0006: stloc.0
IL_0007: ldloc.0
IL_0008: ldc.i4.1
IL_0009: callvirt instance void class MetaTest.ArrayExpandable`1/*02000003*/<int32>/*1B000001*/::Add(!0) /* 0A00000D */
IL_000e: nop
IL_000f: newobj instance void class MetaTest.ArrayExpandable`1/*02000003*/<string>/*1B000002*/::.ctor() /* 0A00000E */
IL_0014: stloc.1
IL_0015: ldloc.1
IL_0016: ldstr "ryzen" /* 70000001 */
IL_001b: callvirt instance void class MetaTest.ArrayExpandable`1/*02000003*/<string>/*1B000002*/::Add(!0) /* 0A00000F */
IL_0020: nop
IL_0021: newobj instance void class MetaTest.ArrayExpandable`1/*02000003*/<string>/*1B000002*/::.ctor() /* 0A00000E */
IL_0026: stloc.2
IL_0027: ldloc.1
IL_0028: ldstr "ryzen" /* 70000001 */
IL_002d: callvirt instance void class MetaTest.ArrayExpandable`1/*02000003*/<string>/*1B000002*/::Add(!0) /* 0A00000F */
IL_0032: nop
IL_0033: ret
} // end of method Program::Main
打开元数据表将上面所涉及到的元数据定义表和类型规格表列出:
metainfo:
-----------定义部分
TypeDef #2 (02000003)
-------------------------------------------------------
TypDefName: MetaTest.ArrayExpandable`1 (02000003)
Flags : [Public] [AutoLayout] [Class] [AnsiClass] [BeforeFieldInit] (00100001)
Extends : 0100000C [TypeRef] System.Object
1 Generic Parameters
(0) GenericParamToken : (2a000001) Name : T flags: 00000000 Owner: 02000003
Method #8 (0600000a)
-------------------------------------------------------
MethodName: Add (0600000A)
Flags : [Public] [HideBySig] [ReuseSlot] (00000086)
RVA : 0x000021f4
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
1 Arguments
Argument #1: Var!0
1 Parameters
(1) ParamToken : (08000007) Name : value flags: [none] (00000000)
------类型规格部分
TypeSpec #1 (1b000001)
-------------------------------------------------------
TypeSpec : GenericInst Class MetaTest.ArrayExpandable`1< I4> //14代表int32
MemberRef #1 (0a00000c)
-------------------------------------------------------
Member: (0a00000c) .ctor:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.
MemberRef #2 (0a00000d)
-------------------------------------------------------
Member: (0a00000d) Add:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
1 Arguments
Argument #1: Var!0
TypeSpec #2 (1b000002)
-------------------------------------------------------
TypeSpec : GenericInst Class MetaTest.ArrayExpandable`1< String>
MemberRef #1 (0a00000e)
-------------------------------------------------------
Member: (0a00000e) .ctor:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.
MemberRef #2 (0a00000f)
-------------------------------------------------------
Member: (0a00000f) Add:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
1 Arguments
Argument #1: Var!0
这时候我们就可以看出,元数据为泛型类ArrayExpandable<T>
定义一份定义表,生成两份规格,也就是当你实例化类型参数为int
和string
的时候,分别生成了两份规格代码,同时还发现以下的现象:
var lsInt = new ArrayExpandable<int>();//引用的是类型规格1b000001的成员0a00000c .ctor构造
lsInt.Add(1);//引用的是类型规格1b000001的成员0a00000d Add
var lsStr = new ArrayExpandable<string>();//引用的是类型规格1b000002的成员0a00000e .ctor构造
lsStr.Add("ryzen");//引用的是类型规格1b000002的成员0a00000f Add
var lsStr1 = new ArrayExpandable<string>();//和lsStr一样
lsStr.Add("ryzen");//和lsStr一样
非常妙的是,当你实例化两个一样的类型参数string
,是共享一份类型规格的,也就是同享一份本地代码,因此上面的代码在线程堆栈和托管堆的大致是这样的:
由于泛型也有元数据的存在,因此可以对其做反射:
Console.WriteLine($"-----------{nameof(lsInt)}---------------");
Console.WriteLine($"{nameof(lsInt)} is generic?:{lsInt.GetType().IsGenericType}");
Console.WriteLine($"Generic type:{lsInt.GetType().GetGenericArguments()[0].Name}");
Console.WriteLine("---------Menthods:");
foreach (var method in lsInt.GetType().GetMethods())
{
Console.WriteLine(method.Name);
}
Console.WriteLine("---------Properties:");
foreach (var property in lsInt.GetType().GetProperties())
{
Console.WriteLine($"{property.PropertyType.ToString()}:{property.Name}");
}
Console.WriteLine($"\n-----------{nameof(lsStr)}---------------");
Console.WriteLine($"{nameof(lsStr)} is generic?:{lsStr.GetType().IsGenericType}");
Console.WriteLine($"Generic type:{lsStr.GetType().GetGenericArguments()[0].Name}");
Console.WriteLine("---------Menthods:");
foreach (var method in lsStr.GetType().GetMethods())
{
Console.WriteLine(method.Name);
}
Console.WriteLine("---------Properties:");
foreach (var property in lsStr.GetType().GetProperties())
{
Console.WriteLine($"{property.PropertyType.ToString()}:{property.Name}");
}
输出:
-----------lsInt---------------
lsInt is generic?:True
Generic type:Int32
---------Menthods:
get_Item
set_Item
get_Capacity
set_Capacity
get_Count
Add
GetType
ToString
Equals
GetHashCode
---------Properties:
System.Int32:Item
System.Int32:Capacity
System.Int32:Count
-----------lsStr---------------
lsStr is generic?:True
Generic type:String
---------Menthods:
get_Item
set_Item
get_Capacity
set_Capacity
get_Count
Add
GetType
ToString
Equals
GetHashCode
---------Properties:
System.String:Item
System.Int32:Capacity
System.Int32:Count
六.总结
泛型编程作为.NET体系中一个很重要的编程思想,主要有以下亮点:
- 编译期确定类型,避免值类型的拆装箱和不必要的运行时类型检验,同样运行时也能通过
is
和as
进行类型检验
- 通过约束进行对类型参数实例化的范围
- 同时在IL层面,实例化相同类型参数的时候共享一份本地代码
- 由于元数据的存在,也能在运行时进行反射,增强其灵活性
参考
Design and Implementation of Generics for the .NET Common Language Runtime
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/
《CLR Via C# 第四版》
《你必须知道的.NET(第二版)》